Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35627524

RESUMO

The spatiotemporal inventory of carbon dioxide (CO2) emissions from the building sector is significant for formulating regional and global warming mitigation policies. Previous studies have attempted to use energy consumption models associated with field investigations to estimate CO2 emissions from buildings at local scales, or they used spatial proxies to downscale emission sources from large geographic units to grid cells for larger scales. However, mapping the spatiotemporal distributions of CO2 emissions on a large scale based on buildings remains challenging. Hence, we conducted a case study in England in 2015, wherein we developed linear regression models to analyze monthly CO2 emissions at the building scale by integrating the Emissions Database for Global Atmospheric Research, building data, and Visible Infrared Imaging Radiometer Suite night-time lights images. The results showed that the proposed model that considered building data and night-time light imagery achieved the best fit. Fine-scale spatial heterogeneity was observed in the distributions of building-based CO2 emissions compared to grid-based emission maps. In addition, we observed seasonal differences in CO2 emissions. Specifically, buildings emitted significantly more CO2 in winter than in summer in England. We believe our results have great potential for use in carbon neutrality policy making and climate monitoring.


Assuntos
Dióxido de Carbono , Aquecimento Global , Dióxido de Carbono/análise , Inglaterra
2.
J Environ Manage ; 312: 114943, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35325736

RESUMO

Land use change driven by human activities plays a critical role in the terrestrial carbon budget through habitat loss and vegetation change. Despite the projections of the global population and economic growth under the framework of the Shared Socioeconomic Pathways (SSPs), little is known of land use/cover change (LUCC) at a fine spatial resolution and how carbon pools respond to LUCC under different SSPs. This study projected the future global LUCC with 1 km spatial resolution and a 10-year time step from 2010 to 2100 and then explored its direct impacts on aboveground biomass carbon (AGB) under SSPs. Scenario SSP3 yields the highest global cropland expansion, among which approximately 48% and 46% is expected to be located in the current forest land and grassland, respectively. Scenario SSP1 has the largest forest expansion and is mainly converted from grassland (54%) and cropland (30%). Due to the spatial change in land use/cover, global AGB loss is expected to reach approximately 3.422 Pg C in 2100 under scenario SSP3 and increases by approximately 0.587 Pg C under scenario SSP1. Africa is expected to lose 30% of AGB under the scenario SSP3. Aboveground biomass in Asia will fix 0.774 Pg C to reverse the AGB loss in 2100 under scenario SSP1. The global carbon loss estimated by the land use products with 10 km and 25 km resolution are less than that with 1 km by 1.5% (ranging from -11.2% in Africa to +34.0% in Oceania) and 2.9% (ranging from -11.8% in Africa to +24.0% in Oceania), respectively. These findings suggest that sufficient spatial details in the existing SSP scenario projections could reduce the uncertainties of AGB assessment, and reasonable land use development and management is a key measure to mitigate the negative impacts of LUCC on the biomass carbon pool.


Assuntos
Carbono , Ecossistema , Biomassa , Florestas , Humanos , Fatores Socioeconômicos
3.
Sci Total Environ ; 762: 143096, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33129539

RESUMO

In response to carbon dioxide (CO2) emissions, numerous studies have investigated the link between CO2 emissions and urban structures, and pursued low-carbon development from the standpoint of urban spatial planning. However, most of previous efforts only focused on urban structures in term of two-dimensional space, whereas the vertical influence of urban buildings (three-dimensional space) plays an important role in CO2 emissions. To address this issue, we took the cities in mainland China as study case to quantitatively explore how the three-dimensional urban structure affects CO2 emissions. First, we collected the city-level CO2 emission data from a greenhouse gas emission dataset released by the China City Greenhouse Gas Working Group. Then, a series of spatial metrics were established to quantify three-dimensional urban structures based on urban building data derived from Baidu Map. On the strength of the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model, an extended approach and ridge regression analysis were finally utilized to investigate the consequences of three-dimensional urban structures on CO2 emissions at the city level. The results indicate that the total building volume is the largest driving force accelerating CO2 emissions due to the massive consumption of energies for human activities during rapid urbanization. Besides, urban buildings with taller height and large heat dissipation area also have significant positive effects on promoting CO2 emissions. Although a compact coverage of urban buildings at a two-dimensional scale contributes to the reduction of CO2 emissions, urban structure characterized by an intense and congested pattern in three-dimensional space can lead to more CO2 emissions because of the adverse impacts from surrounding environment and traffic congestion. Additionally, an irregular pattern of three-dimensional urban structure would help reduce CO2 emissions to some extent. Such study results highlight the importance of urban planning for the development of a low-carbon city, and suggest the compact patterns of three-dimensional urban structures should be controlled within a reasonable range to avoid more CO2 emissions caused by excessive centralization and aggregation.

4.
Sci Total Environ ; 613-614: 1417-1429, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898508

RESUMO

Urbanization has profoundly altered the terrestrial ecosystem carbon cycle, especially the net primary productivity (NPP). Many attempts have been made to assess the influence of urbanization on NPP at coarse resolutions (e.g., 250m or larger), which may ignore many smaller and highly fragmented urban lands, and to a large extent, underestimate the NPP variations induced by urban sprawl. Hence, we attempted to analyze the NPP variations influenced by urban sprawl at a fine resolution (e.g., 30m), toward which the accuracy of NPP was improved using remotely sensed data fusion algorithm. In this paper, this assumption was tested in the Pearl River Delta of China. The land cover datasets from the Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) were acquired to quantify the urban sprawl. The synthetic Normal Differential Vegetation Index (NDVI) data was obtained by fusing Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI via spatiotemporal fusion algorithm. The Carnegie-Ames-Stanford Approach (CASA) model was driven by land cover map, synthetic NDVI and meteorological data to estimate the 30-m resolution NPP. Then, we analyzed the influence of urban sprawl on 30-m resolution NPP during the period of 2001-2009. Additionally, we also simulated the spatiotemporal change of future urban sprawl under different scenarios using the Future Land Use Simulation (FLUS) model, and further analyzed its influence on 30-m resolution NPP. Our results showed that the accuracy of 30-m resolution NPP from synthetic NDVI is better than 500-m resolution NPP from MODIS NDVI. The loss in 30-m resolution NPP due to urban sprawl was much higher than 500-m resolution NPP. Moreover, the harmonious development scenario, characterized by a reasonable size of urban sprawl and a corresponding lower NPP loss from 2009 to 2050, would be considered as a more human-oriented and sustainable development strategy.

5.
PLoS One ; 10(9): e0138310, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26390037

RESUMO

Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.


Assuntos
Dióxido de Carbono/análise , Combustíveis Fósseis/análise , Efeito Estufa , Imagens de Satélites , Análise Espacial , China , Monitoramento Ambiental/métodos , Europa (Continente) , Humanos , Luz , Centrais Elétricas , Estados Unidos , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...